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Abstract

In this paper we develop a new multiaccess protocol for ad hoc radio networks. The protocol is based on the
original MACA protocol with the adition of a separate signalling channel. The unique feature of our protocol is
that it conserves battery power at nodes by intelligently powering off nodes that are not actively transmitting or
receiving packets. The manner in which nodes power themselves off does not influence the delay or throughput
characteristics of our protocol. We illustrate the power conserving behavior of PAMAS via extensive simulations
performed over ad hoc networks containing 10-20 nodes. Our results indicate that power savings of between 10%
and 70% are attainable in most systems. Finally, we discuss how the idea of power awareness can be built into
other multiaccess protocols as well.

1 Introduction

Ad Hoc networks are multi-hop wireless networks where all nodes cooperatively maintain network connectivity. These
type of networks are useful in any situation where temporary network connectivity is needed. For instance, consider
the problem of establishing a temporary wireless network in a region hit by some natural disaster. An ad hoc network
here would enable medics in the field to retrieve patient history from hospital databases (assuming that one or more
of the nodes of the ad hoc network are connected to the Internet) or allow insurance companies to file claims from
the field. Other examples of such ad hoc networks include internetworking participants in a meeting to enable them
to exchange data, battlesite networks, etc.

Nodes in an ad hoc network communicate via radio and since the radio channel is shared by all nodes, it becomes
necessary to control access to this shared media. Several authors have developed channel access protocols for multi-
hop radio networks where the goal has been maximizing throughput and minimizing transmission delay. Unlike this
previous work, however, in this paper we present a channel access protocol that reduces the power consumption
at each of the nodes. Reducing power consumption is clearly an important goal because battery life is not expected
to increase significantly in the coming years. In an ad hoc network, it is even more important to reduce power
consumption because these networks are typically established in mission critical environments (such as disaster
relief).

Significant power is consumed at a node when it either transmits a packet or when it receives a packet. Thus,
the DEC Roamabout radio [3] consumes approximately 5.76 watts during transmission, 2.88 watts during reception
and 0.35 watts when idle. The radio used in [13] consumes 15 watts while transmitting, 11 watts while receiving and
50mW in idle mode. Now, notice that in ad hoc networks, a transmission from one node to another is potentially
overheard by all the neighbors of the transmitting node — thus all of these nodes consume power even though the
packet transmission was not directed to them! For example, in the ad hoc network illustrated in Figure 1, node A’s
transmission to node B is overheard by node C because C is a neighbor of A. Node C thus expends power receiving a
packet not sent to it! In our protocol, node C turns itself off during the transmission from A to B to conserve power.
It is easy to see that the potential savings of this simple approach can be enormous — particularly in dense networks.

*The firstrauthor’s'work was supported by the NSF under grant number NCR-9706080 and ONR under grant number N00014-97-1-
0806.
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A transmits A’s transmission
toB is overheard by C

Figure 1: Unnecessary power consumption.

The remainder of this paper is organized as follows. In the next section we survey several multiaccess protocols
that have been devised for ad hoc networks. Section 2.1 presents other work related to conserving power. Our
protocol is presented in section 3 and its performance is discussed in section 4. Section 5 discusses how our approach
for conserving power can be extended to other multiaccess protocols. We also discuss possible extensions of our basic
protocol. Finally, our conclusions are presented in section 6.

2 Channel Access Protocols for Ad Hoc Networks

Channel access protocols for ad hoc networks have to contend with the problem of hidden terminals in addition to
the problem of contention as in the Ethernet. Figure 2 illustrates the hidden terminal problem. Here, node A begins
transmitting a packet to node B. However, since node C is out of range of node A, it begins transmitting a packet
some time later. This results in collisions at the receiver B. Observe that neither of the two senders is aware of
the collision and therefore cannot take preventive measures. It is noteworthy that this type of a problem does not
arise in the Ethernet (for instance) because all nodes can hear one another. Several authors have developed different
solutions to the hidden terminal problem. In this section we examine some of these proposals. Before doing so,
however, it is important to observe that research in building ad hoc packet radio networks was initiated by DARPA
in 1972. An excellent summary of the results of this work are provided in [18, 4]. Many access protocols developed as
part of this program used some form of CSMA. Suggested approaches for dealing with hidden terminals include using
appropriate “randomization delaying” [16] to reduce the probability of receiver-side collisions, the use of CDMA [11]
and the use of adaptive transmission scheduling [9] (based on node connectivity) which ensures that the probability of
two nodes transmitting to a common receiver is small. [27] presents another spread-spectrum based access protocol
called PSMA (Preamble Sense Multiple-Access) that is a variant of CSMA where nodes wait for a random time
before transmitting. A brief description of some of the more recent radios developed for military applications can be
found in [2]. In the remainder of this section we will examine multiaccess protocols that PAMAS is based on. We
will focus on how these protocols deal with (or not) the hidden terminal problem.

A B C

A transmits a packet to B

C transmits a packet to B

Time

Collision at B
Figure 2: The hidden terminal problem.

MACAJ17] is a protocol that many other, more recent, protocols are based on. Here, whenever a node wishes to
transmit a packet to a neighbor, it first transmits a RTS (Request To Send) message. The receiver responds with a
CTS (Clear To Send) message. Upon receiving the CTS message, the sender begins transmitting the packet. How
does this RTS-CTS message exchange alleviate the hidden terminal problem? In Figure 2, C would have received
the CTS transmission from B before A begins transmitting the packet to B. Thus C can hold off transmitting until
B receives A’s packet completely (the RTS and CTS messages contain the length of the packet). It is possible that
thepRITSpmessageporpitsp@ESpmay suffer a collision. In this case the sender executes a binary exponential backoff
algorithm and tries to send a RTS again, later.
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Figure 3: Hidden terminal problem in MACA.

Even though MACA solves the hidden terminal problem illustrated earlier, it creates another! In Figure 3(a), A
sends a RTS to B who responds with a CTS. However, D sends a RTS to C at about the time that B is sending a
CTS to A. Thus C hears a collision and does nothing. A receives the CTS and begins transmitting the data packet.
D, on the other hand, retransmits a RTS after some time. Since C does not know that B is receiving a packet, it
responds with a CTS. This CTS transmission, unfortunately, collides with the packet transmission at node B.

When collisions occur in MACA, recovery is left up to the transport layer thus greatly reducing throughput.
MACAW][5] is a modified version of MACA where link layer ACKs have been added. Thus, a sender can retransmit
a packet that was not successfully received at the receiver. In the above example, B will not send an ACK for the
packet and A will retransmit it again. FAMA[12] is a refinement of the MACAW protocol in that it includes a
non-persistent CSMA at the beginning of each free slot. In addition, the length of the CTS is made longer than the
RTS to deal with the situation illustrated in Figure 3(b). If the length of the CTS is longer, node C will receive a
part of the CTS transmission (either the initial part or the end). It will interpret this as noise wait for the length
of one (maximum length) packet transmission before doing anything (it will not transmit a packet even if it receives
a CTS from D). This solution also fixes the problem illustrated in Figure 3(a). Here, node C will hear noise (when
control packets collide) and will ignore all transmissions for the length of time taken to transmit one maximum length
packet. MACA /PR[20] is a protocol based on MACAW with the provision of non-persistent CSMA (as in FAMA). In
addition, MACA /PR supports real-time data traffic by including a reservation mechanism in the RTS-CTS-Packet-
ACK sequence. Finally, the IEEE 802.11 standard for wireless LANs includes the collision avoidance of MACA and
MACAW. In addition, all directed traffic uses positive ACKs (again as in MACAW).

A different approach to the problem is described in [29]. In this system, there is a separate channel used for
transmitting “busy tones”. Thus, when a node wants to transmit a packet, it transmits the preamble of its packet
(this contains the receivers address). The receiver responds with a busy tone. On hearing the busy tone, the sender
continues sending the packet. It is easy to see that the hidden terminal problems described above are handled with
this solution. Other approaches to channel access include splitting the network into clusters and using a different
spreading code in each cluster (see [14]).

2.1 Power Conserving Research

In this section we review work related to conserving power in devices used in mobile environments. Battery life
imposes a severe constraint on the deployment and large-scale use of mobile computing technology in the future
and has prompted several researchers to develop approaches for conserving power on mobile computers. Significant
amount of power is consumed by the display, by spinning disks, by the CPU and by the radio. In the event a camera
or other recording device is attached to the mobile that I/O device is also likely to be a power drain. [15] discusses
the problem of power consumption in displays and proposes several solutions. [10, 19, 36] study the issue of power
consumption by spinning disks and propose algorithms for spinning up or spinning down disks based on the expected
disk access patterns. [7] is one example of research on the development of power-efficient I/O devices — in this case
the design of a power-efficient wireless digital camera suitable for use in the field. [23] presents a useful discussion of
energy consumption in a prototype multimedia radio built at UCLA.

Recently, some researchers have begun studying the problem of reducing power consumption by the wireless
interfacemThusy|32]pobservesithatythe average life of batteries in an idle cellular phone is one day. [33] studies power
consumption of several commercial radios (WaveLAN, Metricom and IR) and observes that even in Sleep mode the
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power consumption ranged between 150-170 mW while in Idle state the power consumption went up by one order
of magnitude. [32] observes that the only way to reduce power consumption in radios is to shut them off and use
this observation to propose a power efficient MAC layer protocol suitable for use within one cell for communication
between a base station and the mobiles. This protocol is based on the paging protocols POCSAG and FLEX where a
base station periodically transmits a beacon followed by a minislot containing the ID of nodes that have a page waiting
for them. These nodes remain awake in order to receive their messages while all the others power themselves off. A
similar idea (based on reservation) is included in the IEEE 802.11 standard as well (see [26]). Here, nodes transmit
their requests to the base station during specific reservation intervals and the base station transmits a TIM (Traffic
Indication Map) that includes the transmission schedule for the nodes. All nodes not participating in transmission
or reception of packets go into doze mode until the next reservation period. The standard also includes an extension
of this idea to ad hoc single-hop networks. Here, nodes compete to be elected the leader to play the role of the base
station. [30] presents a comparison of the power consumption behavior of three protocols IEEE 802.11, DQRUMA
(see [21]) and DSA++ (see [25]) in a single-hop environment. Their main conclusions are that contention results in
higher energy consumption while reservation and scheduling results in lower energy consumption. [8] also discusses
the energy consumption of protocols and shows that persistence is not always a good choice and adaptive strategies
that avoid packet retransmissions during bad channel periods is a good energy conserving strategy. Furthermore, [8]
presents a access protocol for cellular networks based on ALOHA and reservation (the protocol is similar to IEEE
802.11) and analyze its performance (energy consumed and throughput). [31] also presents a reservation-based power
conserving access protocol for mobile ATM networks.

It is interesting to note that all the work reported above has been done in the context of a cellular network model
(i.e., all mobiles are one hop away from a base station). Our work, on the other hand, considers energy conservation
in a multi-hop wireless network.

3 The PAMAS Protocol

The PAMAS protocol is a combination of the original MACA protocol (see [17]) and the idea of using a separate
signalling channel (as in [29, 34]). Thus, we assume that the RTS-CTS message exchange takes place over a signalling
channel that is separate from the channel used for packet transmissions. This separate signalling channel enables
nodes to determine when and for how long they can power themselves off (section 5 shows why the lack of a separate
signalling channel, in most other protocols, results in sub-optimal power conservation). In this section we first present
the PAMAS protocol. Later, we add power conserving behavior to the protocol in a way that does not change the
delay or throughput behavior of PAMAS.

Receive RTS/Send CTS**

eceive RTS/Send CTS**

New RTS/
Send CTS**

Await Packet
(1 time step)

No Packet
or Noise

Queue>0, Send RTS
to destination if it is

No CTS or Busy Ton®
or unrelated RTS

Receive RTS/
Send CTS**

ime expired and destination
is not transmitting/Send RTS

Packet starts arriving/
Transmit Rusy Tone

#* - if data channel is idle and
no noise over control channel

Receive
Packet

Receive other RTS/Transmit Busy Ignore RTS/CTS transmissions
Tone. Ignore all CTSs received

Figure 4: The PAMAS Protocol.
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The state diagram outlining the behavior of our protocol is illustrated in Figure 4. As indicated in the figure, a
node may be in any one of six states Idle, AwaitCTS, BEB (Binary Exponential Backoff), Await Packet, Receive
Packet, and Transmit Packet. When a node is not transmitting or receiving a packet, or does not have any packets
to transmit, or does have packets to transmit but cannot transmit (because a neighbor is receiving a transmission)
it is in the Idle state. When it gets a packet to transmit, it transmits a RTS and enters the AwaitCTS state. If the
awaited CTS does not arrive, the node goes into binary exponential backoff (the BEB state in the figure). If a CTS
does arrive, it begins transmitting the packet and enters the Transmit Packet state. The intended receiver, upon
transmitting the CTS, enters the Await Packet state. If the packet does not begin arriving within one roundtrip
time (plus processing time), it returns to the Idle state. If the packet does begin arriving, it transmits a busy tone
over the signalling channel and enters the Receive Packet state. Let us now look at the functioning of the protocol
in some more detail'.

When a node in the Idle state receives a RTS, it responds with a CTS if no neighbor is in the Transmit Packet
state or in the AwaitCTS state. It is easy for a node to determine if any neighbor is in the Transmit Packet state (by
sensing the data channel). However, it is not always possible for a node to know if a neighbor is in the AwaitCTS
state (the transmission of the RTS by that neighbor may have collided with another transmission over the control
channel). In our protocol, if the node heard noise over the control channel within 7 2 of the arrival of the RTS, it
does not respond with a CTS. If, however, it does not hear a packet transmission begin within the next 7, it assumes
that none of its neighbors is in the AwaitCTS state anymore.

Now consider a node that is in the Idle state and has a packet to transmit. It transmits an RTS and enters the
AwaitCTS state. If, however, a neighbor is receiving a packet that neighbor responds with a busy tone (twice as
long as a RTS/CTS) that will collide with the reception of the CTS. This will force the node to enter the BEB state
and not transmit a packet. If no neighbor transmits a busy tone and the CTS arrives correctly, transmission begins
and the node enters the Transmit Packet state.

Say a node that transmitted a RTS does not receive a CTS message. It enters the BEB state and waits to
retransmit a RTS. If, however, some other neighbor transmits a RTS to this node, it leaves the BEB state, transmits
a CTS (if no neighbor is transmitting a packet or is in the AwaitCTS state) and enters the Await Packet state (i.e.,
it waits for a packet to arrive). When the packet begins arriving, it enters the Receive Packet state. If it does not
hear the packet in the expected time (i.e., round trip time to the transmitter plus some small processing delay at
the receiver), it goes back to the Idle state.

When a node begins receiving a packet, it enters the Receive Packet state and immediately transmits a busy tone
(whose length is greater than twice the length of a CTS). If the node hears a RTS transmission (directed to some
other node) or noise over the control channel at any time during the period that it is receiving a packet, it transmits
a busy tone. This ensures that the neighbor transmitting the RTS will not receive the expected CTS. Thus, the
neighbors transmission (which would have interfered with the node receiving a packet) is blocked.

It is easy to see that our protocol handles the hidden terminal problems illustrated in Figure 2. For instance, in
the first example, node B’s reception of a packet from A will not be affected by the transmission of a CTS by node C
(since these transmissions occur over separate channels). In the second example, when node B begins receiving the
packet from A, it transmits a busy tone that is heard by node C. If the busy tone overlaps with the CTS transmission
from node D to node C, node C hears only noise and will enter the BEB state and transmit a RTS again, later. This
retransmission of the RTS will be met by another busy tone from B if B is still receiving the packet. This continues
until either B finishes receiving or D sends a RTS to C (in this case C may begin receiving a packet from D).

3.1 Powering off radios

We noted in section 1 that nodes consume power while transmitting or even while receiving a packet. Unfortunately,
in an ad hoc network, it is frequently the case that a packet transmission from one node to another will be overheard
by all the neighbors of the transmitter. All of these nodes will thus consume power needlessly. Consider a simple
example where the network is fully connected (i.e., all nodes are within transmission range of each other) with n
nodes. A transmission here will be heard by all n — 1 nodes. If the power consumed in transmitting a packet is ¢
and r is the power consumed while receiving, we see that the total power consumed (system-wide) for one packet
transmission is ¢ + (n — 1)r. This is a huge waste because the total power consumed for a single transmission should
be no more than ¢ + r (ignoring the power consumed in the CTS-RTS-Busy Tone transmissions).

LWe assume that the data channel'and the control channel have identical conditions (e.g., noise).
27 = one roundtrip time plus transmission time for a RTS/CTS.
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In order to conserve power and extend the lifetime of mobile nodes, the PAMAS protocol requires nodes to shut
themselves off if they are in a situation where they overhear transmissions. Thus, our protocol ensures that in the
fully connected example above, n — 2 nodes will shut themselves off for the duration of the transmission. We have
identified two conditions under which it is beneficial for a node to turn itself off.

@ If a node has no packets to transmit, then that node ought to power itself off if a neighbor begins transmitting.

@ Similarly, if at least one neighbor of a node is transmitting and another is receiving, the node ought to power
off because it cannot transmit or receive a packet (even if its transmit queue is non-empty).

Every node in our system makes the decision to power off independently. A node knows if a neighbor is trans-
mitting because it can hear the transmission (over the data channel). Likewise, a node (with a non-empty transmit
queue) knows if one or more of its neighbors is receiving because the receivers transmit a busy tone when they begin
receiving a packet (and in response to RTS transmissions). Thus, a node can easily decide when to power off. There
are, however, two additional questions to be answered:

1. For how long is a node powered off?
2. What happens if a neighbor wishes to transmit a packet to a node that has powered itself off?

Let us answer the second question first using an example. Say we have a line network with four nodes (A-B-C-D)
and node B is transmitting to node A. The transmission is overheard by node C (who powers itself off). Say node
D has a packet to transmit to node C. Since C is powered off, D’s RTSs go unanswered causing D to go into BEB.
What happens if C was not powered off? In this case, since C’s neighbor B is transmitting a packet, C will not
respond to D’s RTSs. Thus, C’s behavior, from the viewpoint of D, is the same irrespective of whether C is powered
off or not! As a corollary, we can see that packet delays do not increase as a result of powering off nodes. This is
because the period of time when a node is powered off is one where it can neither receive packets nor can it transmit
packets.

To answer the first question we need to consider several cases. Ideally, a node ought to stay powered off whenever
any of the two conditions (&) hold. However, collisions in the signalling channel and the data channel may make it
difficult for a node to determine the length of a transmission. Nodes follow the following protocol to determine the
length of time for which they can power off.

® When a packet transmission begins in the neighborhood of a node, it knows the duration of that transmission
(say [). If the node has an empty transmit queue, it powers itself off for | seconds.

® It is possible that one or more neighbors may begin data transmission while the node is powered off. In this
case, when the node powers back on, it will continue hearing transmissions over the data channel. If the node
still has an empty transmit queue, it ought to power itself off again. But for how long®?

Figure 5 illustrates the case when three neighbors begin transmission after a node powers off. These transmis-
sions are ongoing when the node powers back on and it needs to find out the remaining transmission time (i.e.,
it needs to find out the value of I5). To do this we add additional functionality in our protocol. The node, upon
waking up, transmits a ¢_probe(l) packet over the control channel where [ is the maximum packet length. All
transmitters with transmissions completing in time period [I/2,1] respond with a ¢_probe_response(t) packet (¢
is the time when this transmitter’s transmissions will end). If the packet is received without collision, the node
powers itself off until time ¢. Otherwise, if there was a collision, it probes interval [31/4,1]. If there is silence,
it probes [1/2,31/4], and so on. If there was silence in response to the initial probe, it probes interval [0,1/2].
In effect, the node does a binary search to determine the time when the last (current) transmission will end.

A simplification that can be built into the probe protocol just described is the following. When the node hears
a collision in response to a probe of the interval [t1,t2], it powers itself off for the period ¢;. This simplification
attempts to reduce the probing time by sacrificing some battery power (since the node will power back on while
a transmission is ongoing). Observe that if the node powers itself off until time ¢, (instead of t1), there is a
likelihood that packet delays will increase. This is because the packet transmissions may cease soon after time
t; but the node is powered off until ¢,. Thus if another node has a packet for this (powered off) node, that
packet _cannot be delivered.

3The node powers off its control channel as well and therefore does not know the length of the remaining transmissions
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©® Next consider the case when a node has a non-empty transmit queue. When the node powers back on (after
it first powered off), it transmits a RTS (rather than probing, because it needs to transmit a packet). If any
node in its neighborhood is receiving a transmission, that node responds with a busy tone (containing the
length of the remaining transmission). If the busy tone collides with another busy tone or a CTS or some
other RTS, the node attempts to probe the receivers using the same binary search algorithm described above
but using a r_probe(l) packet (the prefix r denotes a receiver probe packet). It probes the transmitters next
using the t_probe(l) packet. Then it powers itself off for min{r,t} where r is the time the last receiver finishes
receiving and ¢ is the time the last transmitter finishes transmitting.

To understand the reason for taking a min above, consider the following two cases. If t < r (i.e., all transmitters
finish before the receivers finish) then we need to power on this node so that, if some other node has a packet
for this node, that node can go ahead with its transmission (to reduce delays). If, on the other hand, ¢t > r, we
need to power back this node after r so that it can begin transmitting packets from its queue (again to keep
delays small).

© Finally, it is important to observe that the probe messages could get corrupted (say more than one node
powers on at the same time and transmits a probe message). In this case there will be no response to the
probes and the nodes will stay on. A workaround we suggest (but have not implemented) is to use p-persistent
CSMA when transmitting a probe packet (with p choosen appropriately). This will reduce the possibility of
collisions of probe packets. We have not implemented this scheme because of two reasons:

— Under light load conditions, the probability of hearing a new transmission after a node powers back on is
low. Hence there is no need to build a sophisticated protocol.

— Under heavy loads, it is almost always the case that when a node powers on there will be ongoing
transmissions. In this case, it is unlikely that the node will have an empty transmit queue. So it will try
to transmit RTS messages which will evoke busy tone responses from receivers. This will quickly inform
the node of the additional time it needs to power off for (we assume that the busy tone transmissions
include the length of the remaining transmission).

[Duration of B’s Transmission

[Dyration of C’s Transmission

[Dyration of D’s Transmission

1 1 13 1 2 Time

Node A is
powered off

Figure 5: Situation when a node powers back on.

It is noteworthy that the above probe protocol can be simplified considerably if we assume that the
node only powers off its data interface but always leaves the signalling interface powered on. This will
enable the node to always know the length of new transmissions and keep the data interface powered off appropriately.
Figure 6 illustrates the block diagram needed for this type of a communications device. Here, the signalling interface
listens to all RTS/CTS/Busy Tone transmissions and records the length of each transmission and reception. This
information (along with the length of the transmit queue) is fed to the power aware logic which determines whether
to turn the data interface off or on. The power aware logic that can be used is as described above with the exception
of the probe algorithm.
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3.1.1 Effect of powering off on Delay and Throughput

An important concern related to powering off radios is whether the delay or throughput behavior of PAMAS changes.
We claim that powering off radios, as we have described, does not have any effect because a radio powers itself off if
it either cannot receive data transmissions directed to it (because a neighbor is transmitting a packet) or if it cannot
transmit a packet (because a neighbor is receiving another transmission). In these cases, even if the radio was not
turned off, it could not receive/transmit a packet. Thus, powering off the radio has no effect on the behavior of
PAMAS. This statement does have an important caveat, however. The length of time that a radio is powered off
should be no longer than necessary (i.e., the two conditions mentioned above hold for this time period) otherwise
the delay and throughput behavior of PAMAS will be changed. It is for this reason that in section 3.1 we use the
probe algorithm to enable nodes to estimate the length of time that a radio can turn itself off. In fact, as we noted
in the discussion earlier, we err on the side of caution and may underestimate the length of this period. This results
in sub-optimal power savings but ensures that the delay/throughput behavior of PAMAS remains unchanged.

4 Power Conserving Behavior of PAMAS

In order to characterize the power (or energy) conserving behavior of our protocol we conducted extensive simu-
lations where we compared the energy expended by PAMAS without power conservation and PAMAS with power
conservation. The simulations were conducted in three different network topologies that, we believe, represent most
ad hoc networks. Thus, we ran PAMAS in a random network topology, a line topology and a fully connected network
topology. We conjectured that networks where nodes are densely connected will show the most power savings while
networks that are sparse will show the least amount of power savings. The reason is that, in a dense network, if
one node transmits most of its neighbors can power off. In a sparse network, on the other hand, fewer nodes can
power off because more simultaneous transmissions are possible. An implication of this is that the throughput will
typically be higher in sparse networks because more transmissions can go on simultaneously.

In the simulations, we used fixed size packets (512 bytes). The RTS and CTS packets were 32 bytes each and
the busy tone was twice as long. The bandwidth was assumed to be 12.8Kbps (observe that our results also hold for
higher data rates we used this rate to keep the length of the simulation time small). In terms of power conservation,
we assumed that no power is consumed when a node is idle (i.e., powered on but not hearing any transmissions), 1
unit of energy is consumed for 32 bytes of transmission (over either the data channel or the signalling channel), and,
0.5 units of energy are consumed at a receiver for every 32 bytes processed (again, data or control).

We ran simulations for networks with 10 and 20 nodes to see how energy conservation scaled. For the random
networks, we generated edges randomly uniformly with probabilities between 0.1 to 0.9 for different experiments (we
only used connected networks in our experiments). A probability of 0.1 generates sparse networks (allowing more
parallel transmissions and hence less energy savings) while an edge probability of 0.9 yields dense networks with much
better energy conserving behavior. Traffic arrived at each node according to a poisson process. The destination was
choosen randomly uniformly from the remaining n — 1 nodes and the packet was routed using the shortest path. All
nodes maintain a FIFO buffer of packets awaiting transmission (we call this the Transmit Queue). The length of
this buffer is fixed at 2n per nodes. Packets arriving at a node with a full buffer are dropped.

Finally, to measure the power savings, we calculated the total number of bytes transmitted B; during a run of
therexperimenty(thisvincludedsdata bytes as well as control bytes), the total number of bytes received B,.(note that
a packet may be received by more than one node and is therefore counted more than once) and the total number of
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packets P transmitted during the experiment. The energy expended per packet is then,
P=(B:+05x%xB,)/P

If we use power conservation, the number of bytes received tends to be smaller, say it is BS. Then, the energy
expended is,

P¢=(B;+05x%x B;)/P
and the power savings can be written as,

Percentage of Power Saved = (P — P¢)/P

We ran each experiment 150 times and computed 95% confidence intervals for the percentage of power saved. The
interval half-widths kept to less than 5% of the point values in all cases.
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Figure 7: Power saved in complete networks with 10 or 20 nodes.

Figure 7 plots the power saved in a complete network (i.e., fully connected) topology as a function of load A
(packets/sec/node). We ran the experiments with 10 nodes and with 20 nodes. It is easy to see that PAMAS
reduces power consumption by almost 50% for high loads and by even more for low loads. The reason for the higher
savings at low loads is that, at low loads, there is less contention for the channel resulting in fewer control message
transmissions (i.e., RTS/CTS/Busy Tone transmissions). At high loads, almost all the nodes have packets to send
and thus contention for the channel is high. This results in fewer actual packet transmissions (which is the only time
when n — 2 of the n nodes not involved in the transmission can power off) and lower power savings. Finally, observe
that the power savings at low loads are higher for networks with more nodes. This is because the number of nodes
that can power off is greater when there are more nodes in the network.

The complete network case illustrates the best case performance of PAMAS. At the opposite end of the spectrum
we have a line network where, as expected, the savings in power were not as dramatic, see Figure 8. The savings
here range from 20% at light loads to less than 10% at heavy loads. The reason for these lower savings is that in a
line network, a large number of packet transmissions can go on simultaneously. Thus, fewer nodes are in a position
to overhear unintended transmissions.

Finally, to get an idea of the dependence of power savings on node connectivity, we ran simulations with random
networks. Figure 9 illustrates the power saved as a function of edge probability for A = 0.05,0.1,0.5,1.0 and 4.0
pkts/sec/node in ten node networks. Figure 10 plots the same values for a network with 20 nodes. As these figures
show, power savings increase as the network connectivity increases. This is not surprising because in dense networks,
more nodes can power off during transmissions. In sparse networks, at light load, we obtain 20-30% power savings
while at high loads this drops to 10%. In dense networks, the power savings at light loads is 60-70% while at high
loads this drops to 30-40%. This drop is caused because the length of the contention period increases.

In the following subsection we develop approximate bounds on the optimal energy savings that can be achieved
in the different types of networks' we have studied. The mathematical formulation of these bounds illustrates the
reasons for the high degree of energy savings PAMAS achieves.
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Figure 8: Power saved in line networks with 10 or 20 nodes.
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Figure 9: Power saved in random networks with 10 nodes.

4.1 Bounds and Approximations on Energy Savings

An ad hoc network can be modeled by a graph, where the nodes represent the mobile radio units and edges represent
neighboring nodes. Battery power is consumed by a radio when transmitting or receiving a packet. Most radios
available in the market operate by consuming about twice as much power (P;) when in transmit mode compared
to being in receive mode (P,). A radio also consumes a very small amount of power when in idle mode (P;), i.e.,
powered on, but neither transmitting nor receiving. Whenever a node k is powered on and a neighbor node transmits
a packet, it will consume power P, even if the transmission is not intended for k. Battery power can be saved if
we can turn off the radios whenever a neighbor transmits packets not intended for that node. For this analysis, we
consider normalized power consumption by a node to be 1 unit in transmit mode, 0.5 unit in receive mode, and 0
units in idle mode.

Assuming point-to-point communication, we can establish some bounds on power savings in an ideal situation.
When a radio transmits a packet, it will be intended for one of its neighbors. Therefore, ideally, for each packet
transmission exactly one intended neighbor should be powered up to receive the packet and the rest of the nodes should
be powered off to maximize power savings. In a fully connected topology of n nodes, for each packet transmission,
n — 2 nodes can be powered off. Our PAMAS protocol achieves this maximum power savings as the unintended nodes
can power themselves off during each packet transmission. In addition, all the nodes know exactly how long to turn
themselves off, and therefore, our protocol is optimal for the fully connected topology.
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Figure 10: Power saved in random networks with 20 nodes.

In the remainder of this section we develop bounds on the maximum possible energy savings for different network
models. In section 4.2 we derive the bounds for the case when the network is a line. Section 4.3 presents bounds for
the case when we have random network topologies (as in our simulations). Finally, in section 4.4 we develop bounds
on energy savings over the set of all random networks. These bounds are useful when we consider that, in a real life
situation, nodes are mobile and, as a result, the network topology changes frequently. Thus, an average bound over
all network topologies gives us an idea of the life of such mobile ad hoc networks.

4.2 Bounds for the Line Topology

Consider a line topology with n nodes. Each node has at most two neighbors. In this topology, when a middle node
is transmitting one of its neighbors should be turned off if that neighbor is neither transmitting nor able to receive
without interference. In the Figure below, we show various scenarios with transmitters and receivers being paired
off. A node with symbol T indicates it is a transmitting node, a node with symbol R indicates a receiving node, and
a node with symbol O can be off. Note that two adjacent nodes can both be transmitting to their neighbors on the
opposite sides without interference. Figure (a) shows the most tight packing where almost all nodes are transmitting
or receiving. Figures (c,d) show the situation where the most energy savings is possible. Here, for every transmitting
node one neighbor can be turned off as it is neither transmitting nor receiving. Figure (b) shows the situation which
is somewhere in between. In the following, we will derive the bounds on energy savings by considering light load and
heavy load conditions.

T R R -T -T -R R -T -T -
()T R -R -T -0 -T -R -R -T -
(O -T R -0 -T -R -0 -T R -
(d) R—T—0—O0—T—R—R—T—0—

Theorem 4.1 In a line topology, with uniform traffic, the amount of energy savings due to the PAMAS protocol for
large n, under light load conditions, is 20%.

Proof: In the line topology, each node that has a packet to transmit will have an intended receiver as one of its
two neighbors. Under light load conditions, we assume that transmitters are not nearby. Specifically, a transmitting
node will not have a competing neighbor trying to transmit. Let the nodes in the line topology be numbered from 1
through n from left to right. With uniform traffic, if the transmitting node is the kth node, its intended receiver will
be its right neighbor with a probability of (n — k)/(n — 1) and left neighbor with a probability of (k —1)/(n — 1).
Under light load conditions, the neighbor who is not the receiver can be turned off to save 0.5 units of energy.

Thus, the total energy savings with the PAMAS protocol for the kth node being the transmitter under light load
conditions is

=k 54 ED)

(1) . (1) x 0.5
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which is 0.5 units of energy.

Under these load conditions, an upper bound on the total power savings is then 0.5/(1.5 + .5) without control
overhead is 25%.

Now, we will add the power consumed in acquiring the channel. The transmitter sends an RTS packet (32 bytes)
which will be received by the two neighbors. The intended receiver replies with a CTS which is received by two
nodes. Finally, the receiver transmits a busy tone of length 64 bytes which is heard by its two neighbors. Total
control overhead is equivalent to transmission energy of 8*32 bytes which is 0.5 units of energy. With this control
overhead, the upper bound on the total power savings for this light load condition is 0.5/(1.5+ .5+ .5), which is 20%.

Thus, under light load conditions, the power savings due to PAMAS is bounded by 20%. O

Theorem 4.2 In a line topology, with uniform traffic, the amount of energy savings due to the PAMAS protocol for
large n, under heavy load conditions, is bounded by 15% without control overhead and by 12.5% with control overhead.

Proof: When the load is heavy, we expect that every node has packets to transmit. Let us consider the situation
with some middle node k being the transmitter. Its intended receiver will be one of its two neighbors. There are four
possible cases with node k being the transmitting node depicted as the third node in the following figure. We can
determine the probabilities for these four events under uniform traffic assumption. The probability that its intended
receiver is node k + 1 is given by (n — k)/(n — 1) and the probability that its intended receiver is node k — 1 is given
by (k—1)/(n — 1). With node k + 1 selected as the receiver, we can have two cases where node k£ — 1 can either
successfully transmit to node k — 2 or be off. The probability that node k — 1 can successfully transmit to node k — 2
is (k—2)/(n — 1) if its head of line packet has a destination lower than k — 1. The probability that node k£ — 1 will
be off because it cannot transmit is (n — k + 1)/(n — 1) when its head of line packet has a destination higher than
k — 1. Likewise, we can have two sub cases when the intended receiver for node k’s transmission is node k£ — 1. There
will be power savings when one of the two neighbors can be turned off. There will be no energy savings with node 1
or node n being the transmitter.
(1) —R—T—T—R——-

2) ——O0—T—R——
(3) R -T -T R
(4) R -T -0 -

By varying the value of k from 2 to n —1 as being the transmitter, the total energy savings for the entire topology
can be computed. Since the power savings is dependent on k, and hence the node position, to find the total power
savings, we will consider only cases 2-4 above. This is to avoid double counting — we must include only the three
cases (2-4 above) as case (1) of node & would be included in the calculation for node k£ — 1 (in case (3)). Power
savings with node k£ being the transmitter with this modification is then,

(n—kt1) (k-1 (k-1 E
m-1n P <(n_1) ATy 0'5>

Total power spent in these three cases without powering off radios is given by

(n—k+1) (k-1 (n—k—-1) k
7(77‘71) ><2.0+(n1)><< 1) ><3.0+7(n1)><2.0>

Percentage power savings due to PAMAS protocol with node k£ being the transmitter is given by,

(n—Kk)n—-k+1)+k(k—1))%0.5
(k—1)(n—k—-1)*3.0+((n—1)(n—k+1)+k(k—1)) %20

By varying the value of k from 2 to (n — 1), we can find a bound for the average amount of power saved to total
power consumed due to powering off of nodes and this value for heavy load condition is about 15%.

There is additional power consumed by the control messages and this needs to be estimated for each of the three
cases above (2-4). A node’s transmission of a RTS will collide with the RTS transmissions of one (or both) of its
neighbors resulting in later retransmissions of the RTS message. The number of times a node will transmit a RTS
message is thus at least 2. Therefore, it is reasonable to assume that this control overhead is twice as much as in the
light load case. This overhead then amounts to equivalent transmission energy for 16*32 bytes or 1 unit of energy.
Whenrweraccount forthisieontiolloverhead, the total power savings is reduced to 12.5% (this value was computed
numerically for n > 10). O

PS(k) =
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4.3 Bounds and Approximations on Power Savings for Random Networks

Let us now develop bounds for the case when the ad hoc network is modelled as a random network. These topologies
are characterized by two parameters — the number of nodes n and the probability of an edge between any pair of
nodes, p. To characterize the maximum possible power savings, we consider the case when the network is lightly loaded
and the case when the network is heavily loaded. In the light load case, a transmitting node will not find another
transmitter nearby. Therefore, we can power off all its neighbors except the receiver. In the heavy load case, on the
other hand, most nodes will have packets to transmit. Therefore, there will be several simultaneous transmissions
and the only nodes that will power off will be those that (a) have a neighbor who is receiving a transmission, and
(b) are not themselves receivers. Let us first derive the bounds for the light load case.

Theorem 4.3 If the average number of neighbors of a transmitting node is d then the approzimate amount of power
savings (under light load conditions) is given by,

d—1

S, =—— " 1
light =~ 125d + 2.5 M

Proof:

Under light load conditions, we can assume that a transmitter will not find another transmitter nearby. Prior
to transmitting a data packet, the transmitter and receiver exchange RTS/CTS packets. In addition, the receiver
transmits a Busy Tone when it starts receiving the data packet. The length of the RTS/CTS packets is 32 bytes
each while the Busy Tone is 64 bytes. Thus, 128 bytes are transmitted prior to the transmission of the 512 byte data
packet.

The total energy expended in transmitting the control and data packets is 14 0.25 units (we assume that it takes 1
unit transmit energy to transmit 512 bytes). In the case where we do not power off radios, the total energy expended
in receiving the transmissions is 0.5 x (1.25d) (recall that we are assuming that receiving a transmission consumes
0.5 units of power for every 512 bytes)?. The energy consumed when we do power off radios is 0.5 x 0.25d + 0.5
(the first term is the energy consumed by all neighbors in listening to the control packets and the second term is the
power consumed by the intended receiver). Thus, the power savings can be written as,

(140.25) + (0.5 x 0.25d + 0.5) d—1

Spope =1 =
light (1+0.25)+ 0.5 x (1.25d) 1.25d + 2.5

This concludes the proof. O

The average degree of a node in a random graph with edge probability p can be approximated as p(n — 1) for
p > 0.3. However, for smaller values of p, we need to do a more formal analysis. Specifically, we need to determine
d conditioned on the fact that the graph is connected. This derivation is presented in Appendix A.

Let us consider the heavy load case next. In the heavy traffic load situation as many nodes as possible will be
transmitting simultaneously without interference. For each transmitting node another node will be the intended
receiver. Therefore, the number of simultaneous transmitters can vary from 1 to n/2 as we need an equal number
of receivers. For each transmitter, an edge must exist to a receiving node and there cannot be any edges from that
receiving node to the other transmitting nodes. Based on this observation, we have,

Theorem 4.4 The average power savings (under heavy load conditions) in random graphs with an edge probability
p s,
S B n—2u
Heavy = 171,25 + 0.25d + 0.0625d log d)

(2)

where u is the average value of the number of simultaneous transmitters in a random graph with an edge probability
of p.

Proof: The energy consumed by the transmitters in transmitting the data packets is p (since one 512 byte packet
consumes 1.0 units of energy). The energy used, in the case when radios are not powered off, is then,

pw+0.5x (n—p) =05n+0.5u

4We assume that the random graph is symmetric (i.e., the expected degree of all nodes is the same), see [6].
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The energy expended if we use PAMAS is,
w4+ 0.5u=1.5u
and the power savings (without accounting for the control overhead) is,
1.5u n—2u

— = 3
0.5n + 0.5u n+pu (3)

In both cases, some energy is used in the initial exchange of control messages. Unfortunately, unlike the light
load case, RTS/CTS messages will collide due to the heavy load. We can estimate the number of RTS messages sent
by one node as follows. If a node has d neighbors, in the first time step, all these nodes transmit a RTS. Since none
succeed, in the next step, we assume that half of these nodes transmit a RTS, and so on. Thus, in logd steps, one
node emerges the winner (note that this is a very optimistic scenario). The total number of RTS transmissions and
the last CTS transmission is thus equal to 2d. After a receiver starts receiving a data packet, it transmits a Busy
Tone lasting twice as long as a RTS or CTS. Thus, the total energy expended in setting up one connection is,

e =0.0625(2d + 2) + 0.5 % 0.0625 % log d * d

where the first term represents the total transmit energy expended (recall that a RT'S/CTS packet is 1/16th a data
packet) and the second represents the total receive energy expended the transmissions (logd in all) are heard by
all d neighbors. The energy savings are,

1.5u+epn n—2u n—2u

S =1- = = 4
Heavy 0.5n+05u+eu n+p+2epn n+p(l.25+0.25d + 0.0625d log d) )

This concludes the proof. O

The value of p can be estimated as follows. Say the maximum number of simultaneous transmitters in a network
is k. Thus with k£ transmitters, we must have one edge from each of these £ transmitters to some k receiving nodes
and the remaining possible k(k — 1) from the transmitter set to receiver set must be absent as otherwise there will
be interference. So far, we have accounted for 2k nodes as either transmitting nodes or receiving nodes. To make the
remaining (n — 2k) nodes not be able to transmit, we require that each of these nodes have an edge to one of the k
receivers. There are k(n — 2k) possible ways of choosing these additional (n — 2k) edges to ensure that we maximize
the set of transmitters.

We can find the number of graphs with exactly k& transmitters in a random graph with edge probability p to be,

a= ( Z ) X ( (n;k) ) x k! x pF x (1 —p)P =1 x k(n — 2% k) x pn=2*

We can obtain the average value for the maximum number of transmitters that can simultaneously transmit in a
random graph with edge probability p to be,
n/2 ko
_ Zik=1
="
k=1 ¢
We calculated the bounds for light load and heavy load cases for different values of n and p and the percentage of
power savings varies from 10% to 50% for n > 10 in the heavy load case while the range is between 20% and 60% for
the light load case. Figure 11 illustrates the approximation for the light load case (on the left) and the bound for the
heavy load case (on the right) when n = 10. In each case we also plot the power savings computed via simulations.
A = 0.05 corresponds to a lightly loaded network while A = 4.0 corresponds to a heavily loaded network. As we can
see, the approximation for the light load case and the bound for the heavy load case match the simulation values
well. The discrepancy we see is caused because of two reasons. In the heavy load case, our estimation of the number
of RTS/CTS message exchanges is too optimistic. In the light load case, on the other hand, the discrepancy comes
about for a different reason. To illustrate this reason, let us focus on sparse networks (p = 0.1). The expected degree
of nodes in these networks is approximately 2 (for n = 10). The power savings computed by equation 1 is 20% while
the savings produced by the simulation is 22%. This higher number comes about because of the specific random
graph topologies that are generated in the simulation. For instance, consider the star network in Figure 12(a). The
power savings obtained if the middle node transmits a packet is about 65% whereas the savings when any of the nine
boundary nodes transmit is 0%. In Figure 12(c), on the other hand, the power savings are always exactly 20%. In
Figuren2(b)ythersavingsrange'between 0% (the leaf nodes) and 27% (the other nodes). Thus, the savings depend
heavily on the degree of the transmitting nodes but the approximation works with the average degree only!
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Figure 11: Bounds on Power Savings.
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Figure 12: Three sparse networks.

4.4 Bounds for Power Savings for o/l random network topologies

In this section we will determine upper bounds for the power savings for mobile ad hoc networks. Here, as nodes
roam about, the network topology changes constantly. Thus, we need to determine power savings independent of the
edge probability p. As before, we consider the lightly loaded case separately from the heavily loaded case.

Theorem 4.5 Under light load conditions, as n — 0o, the power savings due to the PAMAS protocol is bounded by
75%.

Proof: In the light load case, it is assumed that nodes that are transmitting are not nearby (unlike in the heavy
load case). Consider a n node network with all possible topologies. Since there can be at most n(n — 1)/2 edges,
the number of distinct network topologies is 2*("~1)/2_ Our approach to finding the power savings is by considering
a specific node, say t, as the transmitter with exactly k& neighbors, with one of these neighbors being the intended
receiver. We can find the number of distinct n node network topologies with this specific transmitter ¢ by selecting
some k nodes among the n — 1 nodes and requiring that an edge exists between node t and these k nodes. We require
that there be no edges between ¢ and the remaining n — k — 1 nodes so that ¢ has exactly k& neighbors. So far, we
have accounted for k edges to be present and (n — k — 1) edges to be absent in determining our topologies. Therefore,
the number of distinct graphs with node ¢ having exactly k neighbors is 9™ ~("=1)  The fraction of all possible
graphs with this scenario is then simply 2~("=1). There are many ways to choose these k neighbors. Under light
load conditions, k& — 1 neighbors can be powered off with one neighbor being the intended receiver. Amount of power
saved is given by the fraction (k — 1)/(k + 2) without control overhead®. We estimate the power consumed due to
the control overhead as follows. Node ¢ will send an RTS packet, k& neighboring nodes receive this, one neighbor
sends CTS which will be received by at least one node, and finally a busy tone sent by the receiver. With control
overhead, the power savings due to PAMAS in a topology with a transmitter having k neighbors will be bounded®

5Power consumed when no node is powered off is 1 + 0.5 x k = 0.5 x (k + 2). Power consumed when k — 1 nodes are turned off is
1+ 0.5 =0.5 x 3. The power savings are thus 0.5 x (k+2 —3) = 0.5 x (k — 1). The fraction of power saved is thus (k —1)/(k + 2).

Since we do not know the degree of the receiver, the power consumed during the RTS/CTS phase is computed as follows: transmit
energy consumed = (1 + 1 -+ 2) % 0.0625 (1 RTS, 1 CTS and a Busy Tone that is twice as long), the receive energy consumed >
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by (k—1)/(k+ 2+ (11 + k) % .0625), where the factor .0625 is the amount of energy consumed in transmitting 32
bytes. We can calculate a bound on power savings for all possible random topologies under light load conditions to
be,

n—1

n—1 e (k—-1)
9—(n—1)
1;< k )X e+ 2+ (11 + k) * -0625)

As expected, the power savings over all topologies increases with n and, in the limit as n — oo, the power savings
is bounded by 75%. Clearly, transmitters with high degree result in greater power savings during data transmission
but, simultaneously, consume more power during the RTS/CTS phase. O

Let us now consider the heavy traffic load situation where as many nodes as possible will be transmitting simul-
taneously without interference.

Theorem 4.6 Under heavy load conditions, the power savings due to the PAMAS protocol is bounded by about 30%
to 40% for n ranging from 10 to 20.

Proof: Under heavy load, we expect transmitting nodes to compete for channel access. For each transmitting node
there will be an intended receiver. Therefore, the number of simultaneous transmitters can vary from 1 to n/2 as
we need an equal number of receivers. Consider the situation that in a random network, there are k simultaneous
transmitters. For each transmitter, an edge must exist from the transmitting node to its intended receiving node
and there cannot be any edges from that receiving node to the other £ — 1 transmitting nodes to avoid interference.
Thus, with k£ transmitters, we must have one edge from each of these k transmitters to some k receiving nodes and
the remaining possible k(k — 1) edges from the transmitter set to the receiver set must be absent, as otherwise there
will be interference. So far, we have accounted for 2k nodes as either transmitting nodes or receiving nodes. To make
the remaining (n — 2k) nodes not be able to transmit, we require that each of these nodes have an edge to at least
one of the k receivers. There are k(n — 2k) possible ways of choosing these additional (n — 2k) edges to ensure we
have maximized the set of transmitters. The transmitter set can be paired with the receiver set in k! ways.
We can find the number of distinct graphs with exactly k transmitters as,

k=n/2

n n—=k 1) /2 kP (s
B= Z <k>><<( k )>Xk!><k(n2k)><2(( 1)/2—k? —(n—2k))

k=1
The kth term in the above summation has graphs with a maximum of k transmitters. We calculate the above
sum with the kth term multiplied by & to find the total number of transmitters possible in these graphs. That is,

k=n/2

¥ nok n(n—1)—k%—(n—:
v = I;kx<k)><<( . ))xklxk(n—Qk)XQ(( 1)— k2~ (n—2k))

Now, if we divide v by 8 we obtain the average value for the maximum number of transmitters that can simul-
taneously transmit in a random graph. We find this value to be

®=7/p
Therefore, we obtain the average power savings for heavy load case to be (see the derivation of eq. 3),
(n—2®)/(n+ @) (5)

We will include the control overhead for the channel by using the average degree information for a transmitters.
With n nodes, the average degree of a node by considering all possible graphs is (n — 1)/2. In the previous section,
we derived an expression for energy e consumed in control overhead with a transmitter having d neighbors.

Therefore, we obtain the average power savings under heavy load to be

(n—2®)/(n+ @+ ed) (6)
We calculated this bound for different values of n and it varies from 30% to 40% for n ranging from 10 to 20. O

0.5 (k414 2)%0.0625 since the RTS is received by all of ¢’s neighbors, the CTS and Busy Tone are received by ¢ (these are also received
by the receiver’s neighbors but we are ignoring this hence we obtain an upper bound). Adding these quantities yields, total energy
consumed for control messages > 0.0625 « (4 + k/2 4 3/2).
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5 Extensions to PAMAS

From the discussion thus far, it is clear that the PAMAS protocol has very good power conserving behavior. However,
it is also clear that the ideas of power awareness that we have developed can be used to make other multiaccess pro-
tocols power conserving as well. This is because nodes are powered off only when they are blocked from transmitting
or receiving. Thus, the delay characteristics of these protocols will not change. These ideas are discussed further in
the next subsection where we outline how power awareness can be added onto protocols such as FAMA, MACAW,
and others discussed earlier in section 2. Then, in the following subsection, we discuss possible extensions to PAMAS
to improve its power conserving behavior and extensions to handle broadcasts.

5.1 Using Power Awareness in other Multiaccess Protocols

In order to conserve power, PAMAS powers off the radio interface in the event that a node is unable to either
transmit or receive a packet. In section 3.1 we discussed how a node knows when and for how long to power off. If
we are to incorporate power awareness in other multiaccess schemes [5, 12, 20] we need to develop similar protocols
that will enable a node to determine when and for how long it needs to power off. Interestingly, however, it turns
out that using the same channel for signalling and data limits the extent of power awareness that can be built into
these protocols.

Based on our discussion in section 3.1, it is clear that, ideally, a node ought to power off either if it has no packets
to transmit and a neighbor is transmitting or if at least one neighbor is transmitting and another is receiving.
However, in order to implement this idea, we need to develop a protocol for powering off that answers the following
questions based on feedback received from the radio channel:

1. When does a node power off?
2. For how long does it power off?
3. What happens when a node powers on and sees an ongoing data transmission?

Let us first look at the FAMA[12] protocol. Here, a node is in the Passive state if it does not hear anything on
the channel and does not have a packet to transmit. If it receives a packet to send in the Passive state, it transmits
a RTS and transitions to the RTS state awaiting a CTS. If no CTS arrives, it enters a BACKOFF state. It stays
here for the appropriate interval, and if it does not hear anything on the channel for the entire period, upon coming
out of backoff, it transmits a RTS. If it hears a transmission, it goes into the Remote state. A station transitions
from the Passive state to the Remote state upon hearing a transmission or noise. In the Remote state, the node node
waits for a time period before returning to the Passive state. The time period is determined as follows:

e If the station hears a RTS, it waits for the time needed to transmit a CTS plus the start of a packet. If it does
not hear anything after this time, it goes back to the Passive state (or transmits a RTS if it has a packet to
send).

e If it hears noise it waits for the time to send a maximum sized data packet. If it hears a CTS, it waits for the
time required to send the data packet.

In the Passive state, there is no need to power off the node because it is not expending power receiving a transmission.
However, power savings can be obtained by turning off the node when it is in the Remote state. In the first case, when
the node hears an RTS and hears the start of packet transmission, the node could power off for the duration of the
transmission (since it knows the packet length). Likewise, if it hears a CTS/noise, it can power off for the appropriate
time period. It is clear that the delay and throughput behavior of FAMA does not change with these modifications
while its power conserving properties do improve. However, the power savings are not the best possible. This is
because, when a node powers back on, it may continue hearing noise/transmissions. This can happen if a node has
two or more neighbors (who are not neighbors of each other) who begin transmissions at different times. When the
node powers back on, it will not know the remaining length of the current transmissions (this is true even if it had
not powered off because it will not hear the CTSs due to collisions with ongoing packet transmissions). Therefore,
it will have to remain powered on until the transmissions complete. Observe that under heavy load conditions, this
situation willvoccur frequently resulting in relatively poor power savings. In contrast, in our protocol, the node

www.manaraa.com



transmits probe packets (on the control channel) to determine the additional length of time for which it can power
off.

In the MACAJ[17] and MACAW]|5] protocols, a node enters the Quiet state when it hears a RTS or a CTS. In
the former case, it waits for the packet transmission to begin and once started, it waits for the packet transmission
to end. In the latter case, it waits for the packet transmission to end before transitioning out of this state. In
either case, it makes sense to power off the node for the duration of the packet transmission. As in the FAMA,
however, if new transmissions begin while a node is waiting for an ongoing one to complete, it does not know when
the new transmission(s) will end. Thus, once it powers on after staying powered off for the duration of the first
transmission, it will have to remain powered on until all the current transmissions finish. This results in needless
power consumption. Finally, the MACA /PR [20] protocol can also be modified in a similar fashion (since it is based
on MACAW and FAMA) but it suffers from the same drawbacks when it comes to conserving power.

The clustering mechanisms used in [14, 22], in contrast to the schemes discussed above, are far more amenable to
power savings. Clustering divides the network into distinct components and a different spreading sequence is used
for transmission within each cluster. Transmission within a cluster is accomplished using TDMA. Thus, every node
is assigned a slot for transmitting its packets (modifications to the basic TDMA allow for the implementation of QoS
guarantees). As such, the TDMA scheme is not amenable to power saving because a node cannot really power off
(some node may be transmitting a packet to it). However, if we add minislots to the start of each TDMA cycle, we
can implement power awareness as follows. For each node in the cluster, allocate a one-bit minislot. All the minislots
are set to zero initially. If a node A wants to transmit to node B, A sets the bit in B’s minislot. Thus B will remain
powered on for the duration of the TDMA cycle. If, on the other hand, a node’s minislot has not been set and it
does not have a packet to transmit, it powers itself off for the length of the TDMA cycle.

5.2 Enchancements to PAMAS

Several enhancements are possible to the basic PAMAS protocol we have described. In this section we outline some
of the more obvious ones. The first modification would be to add ACKs as has been done in MACAWI5]. Thus,
the receiver transmits an ACK when a packet is received correctly. In addition, if the sender does not receive the
ACK and transmits a RTS with the same packet number again, the receiver responds with an ACK instead of a
CTS. Another modification that will improve throughput is to allow a node to transmit multiple packets when it has
acquired the channel. This will serve to reduce time spent on channel access (but may increase delays). In order to
implement power savings, we will need to ensure that the RTS/CTS/Busy Tone messages include the total length of
the transmission (length of all packets being transmitted). Thus, a node will know the length of time for which it
can power off.

Another possible enhancement to PAMAS is to power off the data interface of a node when its signalling interface
is trying to acquire the channel. Thus, in a line subnetwork A-B-C-D, if C is transmitting to D while B is sending an
RTS to A, powering off B’s data interface ensures that C’s transmission does not result in power consumption at B.

5.2.1 Support for Broadcasting

Broadcasting is often necessary in networks and, even though broadcasting is typically a network layer function, it
is often necessary to provide MAC layer support. In PAMAS and other ad hoc network MAC layer protocols, a
sequence of message exchanges (RTS-CTS) preceedes transmission of a packet. This message exchange ensures that
the receiver is ready to receive the transmission. However, if a node needs to broadcast a message to all its neighbors,
using the RTS-CTS sequence is meaningless because all the neighbors are potential receivers of the broadcast. If
they all respond with a CTS (or if some respond with a CTS and others with a Busy Tone), the transmitter will
hear noise and will be unable to decide what to do.

In PAMAS, the transmitter transmits a RTS_B message when it needs to transmit a broadcast. As in the basic
PAMAS protocol, however, it transmits this message if no neighbor is transmitting or is scheduled to transmit.
Upon hearing the RTS_B, a node receiving another transmission responds with a Busy Tone. Nodes that are free to
receive the broadcast do not respond. If the transmitter does not hear any response in time equal to one roundtrip
time plus processing delay, it transmits the broadcast message. If it hears a Busy Tone or noise in response to the
RTS_B, it refrains from transmitting. It waits for the ongoing transmission to end (i.e., it waits for a maximum
packet transmission time in case it heard noise or for the length of time specified in the Busy Tone) and retries.
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When a node begins receiving the broadcast packet, it transmits a Busy Tone to warn other neighbors to refrain
from transmitting.

A potential problem in this protocol is that a broadcast may collide with another transmission at some receiver.
This is because nodes do not transmit CTSs in response to a RTS_B. Thus, their neighbors, two hops away from
the transmitter of the broadcast, are unaware that it is about to receive a broadcast. If a node that heard a RTS_B
heard noise when it expected the broadcast, it waits for the transmission to cease and transmits a NACK_B packet
to the sender over the data channel (after the usual RT'S-CTS exchange). We leave recovery from this situation to
the network layer because the network layer is aware of the network topology and is in the best position to decide
whether the broadcast need be repeated.

Power awareness can be easily incorporated here as follows. If we assume that every broadcast packet has a unique
identifier (that is included in the RTS_B message) then a neighbor of the transmitter who has already received the
packet can power itself off for the duration of the transmission.

6 Conclusions

In this paper we developed a novel multiaccess protocol for ad hoc networks that conserves power by turning off
radios under certain conditions. We implemented and measured the performance of this protocol and showed that
power savings range from 10% (in cases where the network is sparsely connected) to almost 70% in fully-connected
networks. The noteworthy aspect of our protocol is that it achieves these power savings without affecting the delay
or throughput behavior of the basic protocol. Finally, we discussed the applicability of our power saving ideas to
other multiaccess protocols and showed how our ideas may be easily incorporated into these protocols, again without
affecting their delay/throughput performance.
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Appendix A

The value of the average degree d of a random graph with edge probability p can be derived as follows. Let P,
denote probability that a n node network (with edge probability p) is connected. Let P,/; denote the probability
that a node in the n node connected network has degree k. That is,

Py/n = Prob[A node has degree k|the n node network is connected]

Prob[degree of node is Kk AND n-node network is connected] P, j

= o =5 (7)

We can then write d as,
k=n—1

d= Y kP,
k=1

In order to obtain the value of Py, we compute P, and P, as follows. To determine P,,, we construct a n node
random network by adding a node to a n — 1 node random network. Edges are put in as dictated by edge probability
p. Using this model, we can write P, as,

n—1
P,=> P (8)
i=1

where,

pi2 P[(n — 1) node graph has i connected components AND nth node connects them all]

We can drop all terms above except the first two (i.e., P! and P2?) and still obtain a reasonable approximation for
P,,. We thus obtain,

0
2

P' + P? where, (9)
L

L5+
D D (L L R e PR D

ny
ni=1

To derive P, j, we again assume that the (n — 1) node network has i < k connected components and that the nth
node connects them all. In addition, the nth node has a degree of k. We thus write,

k
i=1
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where,

P} 2 P[(n — 1) node graph has i components AND nth node connects them AND nth node has degree k|

We again drop all but the first two terms and obtain,
P.x =~ P!+ P? where, (11)
n—1 nk—
Pk} = ( k )pk(lp) k 1Pnfl

125+

n—1
IR YN G ORI L
’I’L1=1

The term @ in the expression above denotes the probability that the nth node has degree k and that it has at least
one edge to each of the two components.

(nkl )pk(l—p)"kl ifni <k,n—n —1<k

Q(n,ny, k) = ’,:1;11 ( Zi ) ( n;ﬁ1k1—1 )p’“(lp)”’“l ifng >kn—n —1>k
n n n—n; —1 ke .

kll=1 ki)( k—lkl )pk(l—p) =1 ifpy <kn—mi —1>k

We can use the above two equations eq. 9 and eq. 11 to determine P/, and hence d.
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